一架梯子,一头程序猿,仰望星空!
LangChain教程(Python版本) > 内容正文

LangChain 简介


简介

LangChain是一个开源的Python库,它提供了构建基于大模型的AI应用所需的模块和工具。通过LangChain,开发者可以轻松地与大型语言模型(LLM)集成,完成文本生成、问答、翻译、对话等任务。LangChain降低了AI应用开发的门槛,让任何人都可以基于LLM构建属于自己的创意应用。

LangChain特性:

  1. LLM 和提示(Prompt):LangChain 对所有LLM大模型进行了API抽象,统一了大模型访问API,同时提供了Prompt提示模板管理机制。
  2. 链(Chain):这些是对 LLM 或其他实用程序的调用序列。LangChain 为链提供标准接口,与各种工具集成,为流行应用提供端到端的链。
  3. 数据增强生成:LangChain 使链能够与外部数据源交互以收集生成步骤的数据。例如,它可以帮助总结长文本或使用特定数据源回答问题。
  4. Agents:Agents 让 LLM 做出有关行动的决定,采取这些行动,检查结果,并继续前进直到工作完成。LangChain 提供了代理的标准接口,多种代理可供选择,以及端到端的代理示例。
  5. 内存:LangChain 有一个标准的内存接口,有助于维护链或代理调用之间的状态。它还提供了一系列内存实现和使用内存的链或代理的示例。
  6. 评估:很难用传统指标评估生成模型。这就是为什么 LangChain 提供提示和链来帮助开发者自己使用 LLM 评估他们的模型。

架构

如上图,langChain提供一套prompt提示词模板管理工具,负责处理提示词,然后传递给大模型处理,最后处理大模型返回的结果,

LangChain对大模型的封装主要包括LLM和Chat Model两种类型。

  • LLM - 问答模型,模型接收一个文本输入,然后返回一个文本结果。
  • Chat Model - 对话模型,接收一组对话消息,然后返回对话消息,类似聊天消息一样。

核心概念

1. Components and Chains

在 LangChain 中,Component 是模块化的构建块,可以组合起来创建强大的应用程序。Chain 是组合在一起以完成特定任务的一系列 Components(或其他 Chain)。例如,一个 Chain 可能包括一个 Prompt 模板、一个语言模型和一个输出解析器,它们一起工作以处理用户输入、生成响应并处理输出。

2. Prompt Templates and Values

Prompt Template 负责创建 PromptValue,这是最终传递给语言模型的内容。Prompt Template 有助于将用户输入和其他动态信息转换为适合语言模型的格式。PromptValues 是具有方法的类,这些方法可以转换为每个模型类型期望的确切输入类型(如文本或聊天消息)。

3. Example Selectors

当您想要在 Prompts 中动态包含示例时,Example Selectors 很有用。他们接受用户输入并返回一个示例列表以在提示中使用,使其更强大和特定于上下文。

4. Output Parsers

Output Parsers 负责将语言模型响应构建为更有用的格式。它们实现了两种主要方法:一种用于提供格式化指令,另一种用于将语言模型的响应解析为结构化格式。这使得在您的应用程序中处理输出数据变得更加容易。

5. Indexes and Retrievers

Index 是一种组织文档的方式,使语言模型更容易与它们交互。检索器是用于获取相关文档并将它们与语言模型组合的接口。LangChain 提供了用于处理不同类型的索引和检索器的工具和功能,例如矢量数据库和文本拆分器。

6. Chat Message History

LangChain 主要通过聊天界面与语言模型进行交互。ChatMessageHistory 类负责记住所有以前的聊天交互数据,然后可以将这些交互数据传递回模型、汇总或以其他方式组合。这有助于维护上下文并提高模型对对话的理解。

7. Agents and Toolkits

Agent 是在 LangChain 中推动决策制定的实体。他们可以访问一套工具,并可以根据用户输入决定调用哪个工具。Tookits 是一组工具,当它们一起使用时,可以完成特定的任务。代理执行器负责使用适当的工具运行代理。

应用场景

  • 对话机器人:构建智能的对话助手、客服机器人、聊天机器人等。
  • 知识库问答:结合知识图谱,进行开放域问题的问答服务。
  • 智能写作:如文章写作、创意写作、文本摘要等。


关联主题